Aggregation-induced fluorescent response of urea-bearing polyphenyleneethynylenes toward anion sensing.
Jian LiMuhammad SaleemQian DuanToyoji KakuchiYougen ChenPublished in: Science and technology of advanced materials (2021)
A π-conjugated urea-bearing phenyleneethynylene polymer (Poly-2) was rationally designed by the Sonogashira coupling condensation reaction and had been demonstrated to have a unique fluorescent quenching effect for the optical detection of all determined anions, especially for CN-. The fluorescent emission of Poly-2 was significantly quenched upon adding CN-, together accompanied with a continuous red shift of the emission peak from 442 to 464 nm with the cyanide concentration increased from 0 to 1.0 mM. On the contrary, its precursor polymer, Poly-1, itself also displayed fluorescent responsibility with all selected anions but had no obvious selectivity and tendency. For instance, the addition of highly basic CN-, N3 -, AcO-, or F- to Poly-1 solution in DMF/H2O (v/v = 1:1) led to the photoluminescence amplification, while the addition of weakly basic anions like Cl-, I-, and Br- showed a fluorescence quenching effect. Both polymers were in a seriously self-aggregated state in solution no matter in the absence or presence of an anion. Interestingly, it was found that Poly-2 exhibited an aggregation-induced emission behavior, while Poly-1 had an aggregation-caused quenching effect, based on the relationship between photoluminescence and polymer aggregation state. The structural characterizations were carried out by NMR spectroscopy and size exclusion chromatography measurements; the photoluminescence properties of Poly-1 and Poly-2 together with anion sensing properties were followed by fluorescence spectroscopy, and the relationship between photoluminescence and aggregation behavior of both polymers in solution was investigated by dynamic light scattering measurements.