Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes.
Dana GoldbergMeital Charni-NatanNufar BuchshtabMeirav Bar-ShimonIdo GoldsteinPublished in: Nucleic acids research (2022)
During fasting, hepatocytes produce glucose in response to hormonal signals. Glucagon and glucocorticoids are principal fasting hormones that cooperate in regulating glucose production via gluconeogenesis. However, how these hormone signals are integrated and interpreted to a biological output is unknown. Here, we use genome-wide profiling of gene expression, enhancer dynamics and transcription factor (TF) binding in primary mouse hepatocytes to uncover the mode of cooperation between glucagon and glucocorticoids. We found that compared to a single treatment with each hormone, a dual treatment directs hepatocytes to a pro-gluconeogenic gene program by synergistically inducing gluconeogenic genes. The cooperative mechanism driving synergistic gene expression is based on 'assisted loading' whereby a glucagon-activated TF (cAMP responsive element binding protein; CREB) leads to enhancer activation which facilitates binding of the glucocorticoid receptor (GR) upon glucocorticoid stimulation. Glucagon does not only activate single enhancers but also activates enhancer clusters, thereby assisting the loading of GR also across enhancer units within the cluster. In summary, we show that cells integrate extracellular signals by an enhancer-specific mechanism: one hormone-activated TF activates enhancers, thereby assisting the loading of a TF stimulated by a second hormone, leading to synergistic gene induction and a tailored transcriptional response to fasting.
Keyphrases
- binding protein
- transcription factor
- genome wide identification
- genome wide
- gene expression
- blood glucose
- dna binding
- dna methylation
- insulin resistance
- cancer therapy
- copy number
- liver injury
- blood pressure
- type diabetes
- quality improvement
- single cell
- anti inflammatory
- skeletal muscle
- cell proliferation
- drug induced
- adipose tissue
- smoking cessation
- weight loss
- cell cycle arrest
- cell death
- heat shock protein
- pi k akt