Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions-LCA Case Study.
Lenka LaiblováJan PeštaAnuj KumarPetr HajekCtislav FialaTomáš VlachVladimír KočíPublished in: Materials (Basel, Switzerland) (2019)
Pitch-faced concrete is becoming a very popular element of modern architecture in the 21st century. In particular, the demand for concrete facades is increasing globally. On the other hand, climate change, environmental degradation, and limited resources are motivations for sustainable building materials. The construction industry is one the highest emitters of CO2 and other greenhouse gases, in which concrete plays a major role. Thus, reduction in the volume of concrete consumption is essential to control greenhouse gases. One approach to this problem is to use textile reinforced concrete (TRC). The main aim of the present study was to compare the subtle TRC facade made of three different types of technical textile rovings (glass, carbon, and basalt) with ordinary facades reinforced by steel reinforcement (ORC). The goal was to compare the basic environmental impact potential according to product category rules (PCR) for concrete structures. The functional unit was defined as an experimental facade with an area of 60 m2 and a 100-year lifespan. Inventory data were elaborated for concrete, steel, and textile fiber production; the building site; service life; demolition; and final disposal. The main life cycle assessment (LCA) parameters were global warming potential (GWP), ozone depletion (ODP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), and photochemical oxidant creation (POCP). All the data used in the work were related to Czech Republic. Textile reinforced concrete facades appeared to be more environmentally friendly in four of six impact categories by an average of 30%. The results of the present study revealed that, in comparison to ORC, TRC has a lower environmental impact for the given conditions and thus good potential for use in sustainable construction.