Effect of UVC Irradiation on the Oxidation of Histidine in Monoclonal Antibodies.
Yuya MiyaharaKoya ShintaniKayoko Hayashihara-KakuhouTakehiro ZukawaYukihiro MoritaTakashi NakazawaTakuya YoshidaTadayasu OhkuboSusumu UchiyamaPublished in: Scientific reports (2020)
We oxidized histidine residues in monoclonal antibody drugs of immunoglobulin gamma 1 (IgG1) using ultraviolet C irradiation (UVC: 200-280 nm), which is known to be potent for sterilization or disinfection. Among the reaction products, we identified asparagine and aspartic acid by mass spectrometry. In the photo-induced oxidation of histidine in angiotensin II, 18O atoms from H218O in the solvent were incorporated only into aspartic acid but not into asparagine. This suggests that UVC irradiation generates singlet oxygen and induces [2 + 2] cycloaddition to form a dioxetane involving the imidazole Cγ - Cδ2 bond of histidine, followed by ring-opening in the manner of further photo-induced retro [2 + 2] cycloaddition. This yields an equilibrium mixture of two keto-imines, which can be the precursors to aspartic acid and asparagine. The photo-oxidation appears to occur preferentially for histidine residues with lower pKa values in IgG1. We thus conclude that the damage due to UVC photo-oxidation of histidine residues can be avoided in acidic conditions where the imidazole ring is protonated.