Login / Signup

Lithographic in-mold patterning for CsPbBr3 nanocrystals distributed Bragg reflector single-mode laser.

Ahmad Syazwan Ahmad KamalCheng-Chieh LinDi XingYang-Chun LeeZhiyu WangMu-Hsin ChenYa-Lun HoChun-Wei ChenJean-Jacques Delaunay
Published in: Nanoscale (2021)
Extensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique. However, due to the fragile nature of the lead halide perovskites which gives rise to significant material deterioration during the lithography and etching processes, realizing a small-size, low-roughness, and single-mode laser remains a challenge. Here, a lithographic in-mold patterning method realized by nanocrystal concentration control and a multi-step filling-drying process is proposed to demonstrate CsPbBr3 nanocrystals distributed-Bragg-reflector (DBR) waveguide lasers. This method realizes the patterning of the CsPbBr3 nanocrystal laser cavity and DBR grating without lift-off and etching processes, and the smallest fabricated structures are obtained in a few hundred nanometers. The single-mode lasing is demonstrated at room temperature with a threshold of 23.5 μJ cm-2. The smallest full width at half maximum FWHM of the laser output is 0.4 nm. Due to the fabrication process and the DBR laser geometry, the lasers can be fabricated in a compact array, which is important for incorporating perovskite-based lasers in complex optoelectronic circuits.
Keyphrases
  • room temperature
  • high speed
  • solar cells
  • high resolution
  • ionic liquid
  • mass spectrometry
  • single cell