Login / Signup

Abscisic acid and aloe-emodin against NS2B-NS3A protease of Japanese encephalitis virus.

SaiPriyanka BhimaneniAnoop Kumar
Published in: Environmental science and pollution research international (2021)
There are no specific drugs for the treatment of Japanese Encephalitis. Thus, new chemical entities or exploration of existing molecules is required. We have tested the antiviral potential of abscisic acid and aloe-emodin against protease of the Japanese encephalitis virus (JEV) using the computational and target-based assay. Maestro Schrödinger glide suite 2019 was used for molecular docking and dynamic studies, and NS2B-NS3A JEV protease kit was used to confirm protease inhibitory activity of abscisic acid and aloe-emodin. The abscisic acid and aloe-emodin have shown optimum binding affinity towards NS2B-NS3A protease of JEV. Furthermore, molecular dynamic simulation results have also shown the stability of abscisic acid and aloe-emodin within the binding pocket of NS2B-NS3A protease. The ADME parameters of both compounds were also found in an acceptable range. The IC50 values were found to be 100 μg/ml and 7.3 μg/ml for abscisic acid and aloe-emodin respectively which indicate more potency of aloe-emodin over the abscisic acid. However, the toxicity prediction results have shown a good safety profile of abscisic acid as compared to aloe-emodin. Thus, further, more detailed experimental studies are required to develop abscisic acid and aloe-emodin as a specific protease inhibitor of JEV.
Keyphrases
  • dengue virus
  • molecular docking
  • oxidative stress
  • risk assessment
  • climate change