Login / Signup

Construction and Chlorine Resistance of Thiophene-Poly(ethyleneimine)-Based Dual-Functional Nanofiltration Membranes.

Luyang ChengQing-Wei MengQingchun Ge
Published in: ACS applied materials & interfaces (2023)
The demand to improve the chlorine resistance of polyamide (PA) membranes is escalated with greater amounts of chlorine-containing disinfectant being used in global water treatment during the COVID-19 pandemic. In this work, we designed thiophene-functionalized poly(ethyleneimine) (TPEI) materials first and grafted them onto a conventional PA membrane to develop novel nanofiltration membranes (PEI-M, TPEI-1-M, TPEI-2-M). These membranes have dual-functionalized selective surfaces covered by hydrophilic amino groups and electron-rich thiophene moieties, which endow these membranes with superior chlorine resistance and improved separation performance. The modified membranes increase the rejection of MgCl 2 from 86.5% of the nascent PA membrane (PA-M) to higher than 93.0% without sacrificing the membrane water permeability. More stable separation performance is achieved with all of the as-prepared membranes than PA-M after exposure to a 2000 ppm sodium hypochlorite solution. TPEI-2-M outperforms other membranes after being treated in a chlorination intensity of 16,000 ppm·h with the smallest flux loss and the highest MgCl 2 rejection. This is mainly ascribed to the highest amount of amino and thiophene moieties on the TPEI-2-M surface. This study provides an effective protocol for developing novel PA-based nanofiltration membranes while demonstrating its superiority over current technologies with exceptional separation performance and antichlorine ability.
Keyphrases
  • drinking water
  • liquid chromatography
  • quantum dots
  • combination therapy
  • newly diagnosed