Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration.
Sebastien N KerisitSebastian T MergelsbergChristopher J ThompsonSigne K WhiteJohn S LoringPublished in: Environmental science & technology (2021)
Injecting supercritical CO2 (scCO2) into basalt formations for long-term storage is a promising strategy for mitigating CO2 emissions. Mineral carbonation can result in permanent entrapment of CO2; however, carbonation kinetics in thin H2O films in humidified scCO2 is not well understood. We investigated forsterite (Mg2SiO4) carbonation to magnesite (MgCO3) via amorphous magnesium carbonate (AMC; MgCO3·xH2O, 0.5 < x < 1), with the goal to establish the fundamental controls on magnesite growth rates at low H2O activity and temperature. Experiments were conducted at 25, 40, and 50 °C in 90 bar CO2 with a H2O film thickness on forsterite that averaged 1.78 ± 0.05 monolayers. In situ infrared spectroscopy was used to monitor forsterite dissolution and the growth of AMC, magnesite, and amorphous SiO2 as a function of time. Geochemical kinetic modeling showed that magnesite was supersaturated by 2 to 3 orders of magnitude and grew according to a zero-order rate law. The results indicate that the main drivers for magnesite growth are sustained high supersaturation coupled with low H2O activity, a combination of thermodynamic conditions not attainable in bulk aqueous solution. This improved understanding of reaction kinetics can inform subsurface reactive transport models for better predictions of CO2 fate and transport.