Login / Signup

All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean ( Phaseolus vulgaris ) in Its Centre of Domestication.

Francisco Medina-PazLuis Rafael Herrera-EstrellaMartin Heil
Published in: Plants (Basel, Switzerland) (2022)
Plant roots recruit most prokaryotic members of their root microbiota from the locally available inoculum, but knowledge on the contribution of native microorganisms to the root microbiota of crops in native versus non-native areas remains scarce. We grew common bean ( Phaseolus vulgaris) at a field site in its centre of domestication to characterise rhizosphere and endosphere bacterial communities at the vegetative, flowering, and pod filling stage. 16S r RNA gene amplicon sequencing of ten samples yielded 9,401,757 reads, of which 8,344,070 were assigned to 17,352 operational taxonomic units (OTUs). Rhizosphere communities were four times more diverse than in the endosphere and dominated by Actinobacteria, Bacteroidetes, Crenarchaeota, and Proteobacteria (endosphere: 99% Proteobacteria). We also detected high abundances of Gemmatimonadetes (6%), Chloroflexi (4%), and the archaeal phylum Thaumarchaeota (Candidatus Nitrososphaera: 11.5%): taxa less frequently reported from common bean rhizosphere. Among 154 OTUs with different abundances between vegetative and flowering stage, we detected increased read numbers of Chryseobacterium in the endosphere and a 40-fold increase in the abundances of OTUs classified as Rhizobium and Aeromonas (equivalent to 1.5% and over 6% of all reads in the rhizosphere). Our results indicate that bean recruits specific taxa into its microbiome when growing 'at home'.
Keyphrases
  • microbial community
  • plant growth
  • arabidopsis thaliana
  • genome wide
  • copy number
  • healthcare
  • genome wide identification
  • single cell
  • gene expression
  • transcription factor
  • anaerobic digestion