PINX1 loss confers susceptibility to PARP inhibition in pan-cancer cells.
Mei HuangXiaotong ZhuChen WangLiying HeLei LiHaopeng WangGaofeng FanYu WangPublished in: Cell death & disease (2024)
PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.
Keyphrases
- dna damage
- dna repair
- oxidative stress
- dna damage response
- induced apoptosis
- chronic kidney disease
- transcription factor
- end stage renal disease
- gene expression
- squamous cell carcinoma
- ejection fraction
- stem cells
- signaling pathway
- cell cycle arrest
- binding protein
- mesenchymal stem cells
- protein kinase
- hepatitis c virus
- prognostic factors
- papillary thyroid
- newly diagnosed
- dna methylation
- endoplasmic reticulum stress
- combination therapy
- stress induced
- nucleic acid
- amino acid