Login / Signup

Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor.

Xiao-Xi LiZhi-Qiang FanPei-Zhi LiuMao-Lin ChenXin LiuChuan-Kun JiaDong-Ming SunXiang-Wei JiangZheng Vitto HanVincent BouchiatJun-Jie GuoJian-Hao ChenZhi-Dong Zhang
Published in: Nature communications (2017)
Atomically thin two-dimensional semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their applications as compliant materials for integration in logic devices. Here, we devise a reverted stacking technique to intercalate a wrinkle-free boron nitride tunnel layer between MoS2 channel and source drain electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed features of ambipolar pn to np diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Van der Waals heterostructures of atomically thin materials hold promise for nanoelectronics. Here, the authors demonstrate a reverted stacking fabrication method for heterostructures and devise a vertical tunnel-contacted MoS2 transistor, enabling gate tunable rectification and reversible pn to np diode behaviour.
Keyphrases