Login / Signup

Using Mie Scattering to Determine the Wavelength-Dependent Refractive Index of Polystyrene Beads with Changing Temperature.

Megan R McGroryMartin D KingAndrew D Ward
Published in: The journal of physical chemistry. A (2020)
Polystyrene beads are often used as test particles in aerosol science. Here, a contact-less technique is reported for determining the refractive index of a solid aerosol particle as a function of wavelength and temperature (20-234 °C) simultaneously. Polystyrene beads with a diameter of 2 μm were optically trapped in air in the central orifice of a ceramic heating element, and Mie spectroscopy was used to determine the radius and refractive index (to precisions of 0.8 nm and 0.0014) of eight beads as a function of heating and cooling. Refractive index, n, as a function of wavelength, λ (0.480-0.650 μm), and temperature, T, in centigrade, was found to be n = 1.5753 - (1.7336 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 20 < T < 100 °C and n = 1.5877 - (2.9739 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 100 < T < 234 °C. The technique represents a step change in measuring the refractive index of materials across an extended range of temperature and wavelength in an absolute manner and with high precision.
Keyphrases
  • cataract surgery
  • public health
  • high resolution
  • optic nerve