Facile Synthesis of gC 3 N 4 -Exfoliated BiFeO 3 Nanocomposite: A Versatile and Efficient S-Scheme Photocatalyst for the Degradation of Various Textile Dyes and Antibiotics in Water.
Darshana Anand UparDebika GogoiManash R DasBhanudas NaikNarendra Nath GhoshPublished in: ACS omega (2023)
Water pollution engendered from textile dyes and antibiotics is a globally identified precarious concern that is causing dreadful risks to human health as well as aquatic lives. This predicament is escalating the quest to develop competent photocatalysts that can degrade these water pollutants under solar light irradiation. Herein, we report an efficient photocatalyst comprising a hierarchical structure by integrating the layered graphitic carbon nitride (gC 3 N 4 ) with nanoflakes of exfoliated BiFeO 3 . The coexistence of these two semiconducting nanomaterials leads to the formation of an S-scheme heterojunction. This nanocomposite demonstrated its excellent photocatalytic activity toward the degradation of several textile dyes (Yel CL2R, Levasol Yellow-CE, Levasol Red-GN, Navy Sol-R, Terq-CL5B) and various antibiotics (such as tetracycline hydrochloride (TCH), ciprofloxacin (CPX), sulfamethoxazole (SMX), and amoxicillin (AMX)) under the simulated solar light irradiation. As this photocatalyst exhibits its versatile activity toward the degradation of several commercial dyes as well as antibiotics, this work paves the path to develop a reasonable, eco-benign, and highly efficient photocatalyst that can be used in the practical approach to remediate environmental pollution.