Login / Signup

In-Plane Lithium Growth Enabled by Artificial Nitrate-Rich Layer: Fast Deposition Kinetics and Desolvation/Adsorption Mechanism.

Xianshu WangHuirong WangMingzhu LiuWeishan Li
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
An artificial lithium-nitrate (LiNO3 )-rich layer (LN-RL) is developed to address dendritic lithium (Li) growth by a fusing-infusing strategy, in which LiNO3 is loaded into stainless steel mesh and a Li-metal anode (LN-RL@Li) is obtained by casting this LN-RL onto Li foil. The LN-RL enables fast Li deposition kinetics in carbonates and endows LN-RL@Li with excellent cycleability. The underneath mechanism on the contribution of LN-RL is uncovered by detailed characterizations combining with theoretical simulations. The LN-RL promotes the desolvation and capacitive adsorption of Li ions and induces in-plane Li growth along the edges of preplated Li with planar morphology. The improved cycleability of LN-RL(@Li) is demonstrated by LiǁCu cell that presents a coulombic efficiency of 97.2% after 280 cycles and LiǁLi cell that proceeds over 1000 h at 0.5 mA cm-2 in carbonates. Additionally, the LiǁLiFePO4 cell shows a capacity retention of 58% after 400 cycles at 1 C (1 C = 170 mA g-1 ), compared to the 35% after 180 cycles for the control. This work presents not only a promising strategy for practical applications of Li-metal batteries, but also a new understanding on the role of nitrate in Li plating/stripping kinetics.
Keyphrases
  • ion batteries
  • solid state
  • nitric oxide
  • drug delivery
  • single cell
  • cell therapy
  • mesenchymal stem cells
  • aqueous solution
  • metal organic framework