Login / Signup

Dynamically Crosslinked Dry Ion-Conducting Elastomers for Soft Iontronics.

Panpan ZhangWenbin GuoZi Hao GuoYuan MaLei GaoZifeng CongXue Jiao ZhaoLijie QiaoXiong PuZhong Lin Wang
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Soft ionic conductors show great promise in multifunctional iontronic devices, but currently utilized gel materials suffer from liquid leakage or evaporation issues. Here, a dry ion-conducting elastomer with dynamic crosslinking structures is reported. The dynamic crosslinking structures endow it with combined advantageous properties simultaneously, including high ionic conductivity (2.04 × 10-4 S cm-1 at 25 °C), self-healing capability (96% healing efficiency), stretchability (563%), and transparency (78%). With this ionic conductor as the electrode, two soft iontronic devices (electroluminescent devices and triboelectric nanogenerator tactile sensors) are realized with entirely self-healing and stretchable capabilities. Due to the absence of liquid materials, the dry ion-conducting elastomer shows wide operational temperature range, and the iontronic devices achieve excellent stability. These findings provide a promising strategy to achieve highly conductive and multifunctional soft dry ionic conductors, and demonstrate their great potential in soft iontronics or electronics.
Keyphrases
  • ionic liquid
  • solid state
  • drug delivery
  • high resolution
  • cancer therapy
  • machine learning
  • gold nanoparticles
  • human health
  • carbon nanotubes