Login / Signup

Titanium nitride as an alternative and reusable plasmonic substrate for fluorescence coupling.

Prabhat MishraAnil K DebnathSharmistha Dutta Choudhury
Published in: Physical chemistry chemical physics : PCCP (2022)
The development of alternative plasmonic materials that can replace gold and silver is of long-standing interest in materials research. In this study, we have prepared and characterized thin films of TiN, an emerging plasmonic material, and examined its effectiveness for fluorescence coupling in metal-dielectric structures having TiN as the plasmonically active component. We have used a combination of experiment and reflectivity calculations to determine the nature and dispersion of the optical modes sustained by the metal-dielectric structures, which furthermore are adjustable by varying the thickness of the dielectric layer. Our results reveal that fluorophores placed on the TiN substrates can couple with the surface-plasmon mode and/or the waveguide modes supported by these structures, to provide polarized and directional emission over narrow angular ranges. The performance of TiN substrates for surface plasmon-coupled emission (SPCE) and waveguide-coupled emission (WGCE) is found to be comparable with conventional Au substrates. Importantly, the TiN thin films are reusable, which is certainly advantageous for their use in SPCE or WGCE-based fluorescence sensing applications.
Keyphrases