Synergistic Effect of Metal Cations and Visible Light on 2D MoS2 Nanosheet Aggregation.
Bei LiuQi HanLi LiSunxiang ZhengYufei ShuJoel A PedersenZhongying WangPublished in: Environmental science & technology (2021)
Aggregation significantly influences the transport, transformation, and bioavailability of engineered nanomaterials. Two-dimensional MoS2 nanosheets are one of the most well-studied transition-metal dichalcogenide nanomaterials. Nonetheless, the aggregation behavior of this material under environmental conditions is not well understood. Here, we investigated the aggregation of single-layer MoS2 (SL-MoS2) nanosheets under a variety of conditions. Trends in the aggregation of SL-MoS2 are consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) colloidal theory, and the critical coagulation concentrations of cations follow the order of trivalent (Cr3+) < divalent (Ca2+, Mg2+, Cd2+) < monovalent cations (Na+, K+). Notably, Pb2+ and Ag+ destabilize MoS2 nanosheet suspensions much more strongly than do their divalent and monovalent counterparts. This effect is attributable to Lewis soft acid-base interactions of cations with MoS2. Visible light irradiation synergistically promotes the aggregation of SL-MoS2 nanosheets in the presence of cations, which was evident even in the presence of natural organic matter. The light-accelerated aggregation was ascribed to dipole-dipole interactions due to transient surface plasmon oscillation of electrons in the metallic 1T phase, which decrease the aggregation energy barrier. These results reveal the phase-dependent aggregation behaviors of engineered MoS2 nanosheets with important implications for environmental fate and risk.