Login / Signup

Long-term performance analysis of chemical filters in clean rooms based on a prediction model.

Yuan ZhiJunjie LiuKaiyuan Liu
Published in: Indoor air (2020)
Chemical filters are the most important devices for removing gas-phase pollutants in clean rooms. However, the testing concentration of chemical filters is too high for reflecting their performance in a real clean room environment. This study tested the adsorption performance of chemical filters in the two most commonly used shapes at different concentrations. Then, the Langmuir equation and Wheeler-Jonas kinetic equation were combined to establish an adsorption performance prediction model of chemical filters under actual conditions. The predicted values of the model were in good agreement with the experimental results, which indicated the high accuracy of the prediction model. The model does not need to test the microscopic parameters of the adsorbent and can maintain high accuracy at low concentrations. A fast method for calculating the service life of chemical filters was also presented. Based on this model, the total cost of using a chemical filter with a high carbon content in microelectronic clean rooms could be decreased by 45% due to decreasing the number of filter replacements over 3 months. So a chemical filter with a high carbon content should be preferred over a filter with low resistance in microelectronic clean rooms.
Keyphrases
  • solid phase extraction