Login / Signup

Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation.

Rossella YivlialinGianlorenzo BussettiMarta PenconiAlberto BossiFranco CiccacciMarco FinazziLamberto Duò
Published in: ACS applied materials & interfaces (2017)
The development of graphene products promotes a renewed interest toward the use of graphite in addition to the historical one for its proven viability as battery electrode. However, when exposed to harsh conditions, the graphite surface ages in ways that still need to be fully characterized. In applications to batteries, to optimize the electrode performances in acid solutions, different surface functionalizations have been studied. Among them, aromatic molecules have been recently proposed. In this communication, we report on the protective effect exerted by a physical-vapor-deposited porphyrin layer. Metal-free tetra-phenyl-porphyrins were deposited on a highly oriented pyrolytic graphite crystal to study the modifications that occur during anion intercalation in graphite. The graphite electrode was plunged in an electrolyte solution of 1 M sulfuric acid and subjected to cyclic voltammetry. The results indicate that blister formation, the characteristic swelling of graphite surface induced by anion intercalation, is significantly perturbed by the porphyrin overlayer; the process is inhibited in those areas where the protective porphyrin film is present. We ascribe the inhibition of the anion intercalation to the protective porphyrin wetting layer.
Keyphrases
  • ionic liquid
  • photodynamic therapy
  • solid state
  • atomic force microscopy
  • metal organic framework
  • room temperature
  • carbon nanotubes
  • gold nanoparticles
  • quantum dots
  • amino acid