Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging.
Samer GnaimAnna ScomparinAnat Eldar-BoockChristoph R BauerRonit Satchi-FainaroDoron ShabatPublished in: Chemical science (2019)
Chemiluminescence offers advantages over fluorescence for bioimaging, since an external light source is unnecessary with chemiluminescent agents. This report demonstrates the first encapsulation of chemiluminescence phenoxy-adamantyl-1,2-dioxetane probes with trimethyl β-cyclodextrin. Clear proof for the formation of a 1 : 1 host-guest complex between the adamantyl-1,2-dioxetane probe and trimethyl β-cyclodextrin was provided by mass spectroscopy and NMR experiments. The calculated association constant of this host-guest system, 253 M-1, indicates the formation of a stable inclusion complex. The inclusion complex significantly amplified the light emission intensity relative to the noncomplexed probe under physiological conditions. Complexation of adamantyl-dioxetane with fluorogenic dye-tethered cyclodextrin resulted in light emission through energy transfer to a wavelength that corresponds to the fluorescent emission of the conjugated dye. Remarkably, the light emission intensity of this inclusion complex was approximately 1500-fold higher than that of the non-complexed adamantyl-dioxetane guest. We present the first demonstration of microscopic cell images obtained using a chemiluminescence supramolecular dioxetane probe and demonstrate the utility of these supramolecular complexes by imaging of enzymatic activity and bio-analytes in vitro and in vivo. We anticipate that the described chemiluminescence supramolecular dioxetane probes will find use in various biological applications.
Keyphrases
- energy transfer
- quantum dots
- living cells
- fluorescent probe
- sensitive detection
- solid state
- single molecule
- high resolution
- fluorescence imaging
- water soluble
- ionic liquid
- photodynamic therapy
- high intensity
- deep learning
- magnetic resonance
- single cell
- stem cells
- cell therapy
- mesenchymal stem cells
- machine learning
- optical coherence tomography
- mass spectrometry
- molecularly imprinted