Login / Signup

Cyclic Homo- and Heterohalogen Di-λ 3 -diarylhalonium Structures.

Wei W ChenMargalida ArtiguesMercè Font-BardiaAna Belén CuencaAlexandr Shafir
Published in: Journal of the American Chemical Society (2023)
In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(C 6 H 4 ) 2 I 2 ] 2+ , was prepared through oxidative dimerization of a precursor bearing the ortho -disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms. These present two phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. This approach was also extended to the cyclic bis-naphthylene derivative [(C 10 H 6 ) 2 I 2 ] 2+ . The structures of these bis-halogen(III) rings were further assessed through X-ray analysis. The simplest cyclic phenylene bis-iodine(III) derivative features the interplanar angle of ∼120°, while a smaller angle of ∼103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs through a combination of π-π and C-H/π interactions. As the largest member of the family, a bis-I(III)-macrocycle was also assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine(III) dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure showing the chelating donor bonding to just one of the two iodine centers.
Keyphrases
  • ionic liquid
  • dual energy
  • high resolution
  • solid state
  • computed tomography
  • magnetic resonance imaging
  • staphylococcus aureus
  • escherichia coli
  • magnetic resonance
  • biofilm formation