Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability.
Huriye ErcanLisa-Marie MauracherElla GrilzLena HellRoland HellingerJohannes A SchmidFlorian MoikCihan AyIngrid Pabinger-FaschingMaria ZellnerPublished in: Cancers (2021)
In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin-α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients.
Keyphrases
- endoplasmic reticulum
- papillary thyroid
- squamous cell
- network analysis
- heat shock protein
- estrogen receptor
- protein protein
- binding protein
- childhood cancer
- squamous cell carcinoma
- amino acid
- small molecule
- brain injury
- electronic health record
- climate change
- single cell
- breast cancer cells
- risk assessment
- cerebral ischemia
- deep learning
- transcription factor
- blood brain barrier