Login / Signup

Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications.

Benjamin CressiotHadjer OuldaliManuela Pastoriza-GallegoLaurent BacriF Gisou Van der GootJuan Pelta
Published in: ACS sensors (2019)
The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.
Keyphrases
  • single molecule
  • amino acid
  • protein protein
  • escherichia coli
  • solid state
  • small molecule
  • label free
  • drug discovery
  • cell free
  • risk assessment
  • quantum dots
  • molecular dynamics simulations
  • water soluble