Login / Signup

Morphologies and dynamics of the interfaces between active and passive phases.

Guoqing XuTao HuangYilong HanYong Chen
Published in: Soft matter (2021)
Active matters exhibit interesting collective behaviors and novel phases, which provide an important platform for the study of nonequilibrium physics. Mixtures of active and passive particles have been intensively studied in motility-induced phase separation, but the morphology of the active-passive interface has been poorly explored. In this work, we investigate the interface morphology in two-dimensional mixtures of active and passive particles using Brownian dynamics simulations. By systematically changing the Péclet number (Pe) and area fraction (ρ), we obtain the phase diagram of the active-passive interface, including rough sharp, rough invasive and flat interdiffusive interfaces. For a sharp interface, dynamic scaling analysis in the propagation stage shows that the roughness exponent α, the growth exponent β, the time exponent κ, and the dynamic exponent z satisfy z = α/(β - κ). Such anomalous scaling indicates that the roughening behavior does not belong to the conventional universality classes with Family-Vicsek scaling for the growth of passive interfaces. On the other hand, the interface in the middle-wavelength regime during the morphology relaxation stage can be described by capillary wave theory. The mean interface position propagates with time as t1/2, which is robust at different ρ and Pe values in the propagation stage and exhibits superdiffusion in the morphology relaxation stage. These similarities and differences between the active-inactive interfaces and passive interfaces cast light on the interfacial growth of active matter.
Keyphrases
  • ionic liquid
  • escherichia coli
  • endothelial cells
  • single cell