Rapid Self-Assembly of Au Nanoparticles on Rigid Mesoporous Yeast-Based Microspheres for Sensitive Immunoassay.
Yuqiang XiangYao ZhangXuan SunYanyan ChaiXiangdong XuYong-Gang HuPublished in: ACS applied materials & interfaces (2018)
A simple, rapid, inexpensive, eco-friendly, and high-throughput biological strategy for the preparation of functional microspheres on a yeast-cell platform was introduced. Microspheres prepared through the treatment of yeast cells with formaldehyde and decoating buffer exhibited excellent characteristics, such as superior mechanical strength, high sulfhydryl group content, and mesoporous structure. Au nanoparticles (NPs) easily and rapidly self-assembled onto the surfaces of the yeast-based microspheres within 5 min to form rigid yeast@Au microspheres with high monodispersity and uniformity. The rapid formation of yeast@Au microspheres mainly involved the enhancement of sulfhydryl groups and mesoporosity. The yeast@Au microspheres were successfully used in a flow cytometry immunoassay to detect Pseudorabies viral infection events. Signal-to-noise ratio was enhanced by approximately 49.4-fold. The presence of Au NPs on the yeast-based microspheres greatly improved sensitivity by decreasing noise through reducing nonspecific adsorption, highly enhancing the fluorescence signal caused by the surface plasmon resonance effect, and increasing the coupling efficiency of the capture protein. The presented method was used to analyze 81 clinical swine serum specimens. The results obtained by this developed method were compared to those of commercial diagnostic kits. The sensitivity, specificity, and efficiency of the developed method were 92.31, 88.24, and 88.89%, respectively. The excellent characteristics of the yeast@Au microspheres illustrate its great potential for high-throughput immunoassay applications in the fields of disease diagnosis, environmental analysis, and food safety.