Login / Signup

Machine learning accurate exchange and correlation functionals of the electronic density.

Sebastian DickMarivi Fernandez-Serra
Published in: Nature communications (2020)
Density functional theory (DFT) is the standard formalism to study the electronic structure of matter at the atomic scale. In Kohn-Sham DFT simulations, the balance between accuracy and computational cost depends on the choice of exchange and correlation functional, which only exists in approximate form. Here, we propose a framework to create density functionals using supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to lift the accuracy of baseline functionals towards that provided by more accurate methods while maintaining their efficiency. We show that the functionals learn a meaningful representation of the physical information contained in the training data, making them transferable across systems. A NeuralXC functional optimized for water outperforms other methods characterizing bond breaking and excels when comparing against experimental results. This work demonstrates that NeuralXC is a first step towards the design of a universal, highly accurate functional valid for both molecules and solids.
Keyphrases