Effect of chain stiffness on the entropic segregation of chain ends to the surface of a polymer melt.
Steven BlaberP MahmoudiRussell K W SpencerMark W MatsenPublished in: The Journal of chemical physics (2019)
Entropic segregation of chain ends to the surface of a monodisperse polymer melt and its effect on surface tension are examined using self-consistent field theory (SCFT). In order to assess the dependence on chain stiffness, the SCFT is solved for worm-like chains. Our focus is still on relatively flexible polymers, where the persistence length of the polymer, ℓ p , is comparable to the width of the surface profile, ξ, but still much smaller than the total contour length of the polymer, ℓ c . Even this small degree of rigidity causes a substantial increase in the level of segregation, relative to that of totally flexible Gaussian chains. Nevertheless, the long-range depletion that balances the surface excess still exhibits the same universal shape derived for Gaussian chains. Furthermore, the excess continues to reduce the surface tension by one unit of k B T per chain end, which results in the usual N -1 reduction in surface tension observed by experiments. This enhanced segregation will also extend to polydisperse melts, causing the molecular-weight distribution at the surface to shift towards smaller N n relative to the bulk. This provides a partial explanation for recent quantitative differences between experiments and SCFT calculations for flexible polymers.
Keyphrases