Login / Signup

Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors.

Alec PickettMika TorkkeliTushita MukhopadhyayBoregowda PuttarajuAmrit LaudariAndreas E LauritzenOier BikondoaJakob Kjelstrup-HansenMatti KnaapilaSatish PatilSuchismita Guha
Published in: ACS applied materials & interfaces (2018)
Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, β = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, β = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm2/V s and an on/off ratio of 106 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.
Keyphrases