Login / Signup

Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens.

Anna AmagaiYoshimasa HondaShinnosuke IshikawaYurie HaraMayuri KuwamuraAkihisa ShinozawaNaoyuki SugiyamaYasushi IshihamaDaisuke TakezawaYoichi SakataKazuo ShinozakiTaishi Umezawa
Published in: The Plant journal : for cell and molecular biology (2018)
Abscisic acid (ABA) and its signaling system are important for land plants to survive in terrestrial conditions. Here, we took a phosphoproteomic approach to elucidate the ABA signaling network in Physcomitrella patens, a model species of basal land plants. Our phosphoproteomic analysis detected 4630 phosphopeptides from wild-type P. patens and two ABA-responsive mutants, a disruptant of group-A type-2C protein phosphatase (PP2C; ppabi1a/b) and AR7, a defective mutant in ARK, identified as an upstream regulator of SnRK2. Quantitative analysis detected 143 ABA-responsive phosphopeptides in P. patens. The analysis indicated that SnRK2-mediated phosphorylation and target motifs were partially conserved in bryophytes. Our data demonstrate that the PpSnRK2B and AREB/ABF-type transcription factors are phosphorylated in vivo in response to ABA under the control of ARK. On the other hand, our data also revealed the following: (i) the entire ABA-responsive phosphoproteome in P. patens is quite diverse; (ii) P. patens PP2C affects additional pathways other than the known ABA signaling pathway; and (iii) ARK is mainly involved in ABA signaling. Taken together, we propose that the core ABA signaling pathway is essential in all land plants; however, some ABA-responsive phosphosignaling uniquely developed in bryophytes during the evolutionary process.
Keyphrases