The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Keyphrases
- label free
- quantum dots
- loop mediated isothermal amplification
- public health
- real time pcr
- living cells
- mental health
- sars cov
- healthcare
- coronavirus disease
- social media
- molecular dynamics
- health information
- quality improvement
- single molecule
- highly efficient
- current status
- respiratory syndrome coronavirus
- acute care