Login / Signup

Synthesis and Opto-electronic Properties of BODIPY o-OPhos Systems.

Thipanni AnithaMadoori MrinaliniDamera VaniSeelam PrasanthkumarKallu Rajender ReddyLingamallu Giribabu
Published in: Photochemistry and photobiology (2020)
Herein, we report the versatile synthetic strategy and opto-electronic properties for the phosphorylation of BODIPY derivatives 5aa-5ak by substituting with an electron-donating/withdrawing group at the ortho position. Nevertheless, this new methodology relatively promotes the tolerance of the aldehyde moiety and the high yield for the synthesis of BODIPY o-OPhos derivatives. The photophysical studies suggest improved optical properties due to the inductive effect of various electron-donating/withdrawing groups. The UV-visible and the emission data suggest that BODIPY o-OPhos derivatives emphasize the property of the excited states with an increase in fluorescence intensity and high quantum yields due to the presence of bulky phospsho-triester at the meso- position which hinders the free rotation around the C-Ar bond and facilitates the development of OLEDs and various organophosphorus warfare agents. Electrochemical studies reveal 5ak depicts the ease of redox activity amongst the 5aa-5ak derivatives. The density functional theory indicates the highest occupied molecular orbital on the BODIPY moiety whereas the lowest unoccupied molecular orbital delocalized on BODIPY and the phospho-triester moieties. Thus, the unique development of the novel BODIPY derivatives with improved optical and redox properties pave the way for fluorescent probes and bioimaging techniques.
Keyphrases