Density and Viscosity of Binary Mixtures of Thiocyanate Ionic Liquids + Water as a Function of Temperature.
U DomańskaM KrólikowskaPublished in: Journal of solution chemistry (2012)
Densities and viscosities have been determined for binary mixtures of the ionic liquids (ILs) 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-butyl-4-methylpyridinium thiocyanate [BMPy][SCN], or 1-butyl-1-methylpyrrolidinium thiocyanate [BMPYR][SCN], or 1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] with water over wide range of temperatures (298.15-348.15) K and ambient pressure. The thermal properties of [BMPy][SCN], i.e. glass transition temperature and the heat capacity at glass transition, have been measured using a differential scanning microcalorimetry, DSC. The decomposition of [BMPy][SCN] was detected. The density and viscosity correlations for these systems have been made using an empirical second-order polynomial and by the Vogel-Fulcher-Tammann equation, respectively. The concentration dependences have been described by polynomials. The excess molar volumes and deviations in viscosity have been calculated from the experimental values and were correlated by Redlich-Kister polynomial expansions. The variations of these parameters, with compositions of the mixtures and temperature, have been discussed in terms of molecular interactions. A qualitative analysis of the trend of properties with composition and temperature was performed. Further, the excess partial molar volumes, [Formula: see text] and [Formula: see text], were calculated and discussed. The isobaric expansivities (coefficient of thermal expansion), α, and the excess isobaric expansivities, α(E), were determined for four ILs and their mixtures with water. The results indicate that the interactions of thiocyanate ILs with water is not as strong as with alcohols, which is shown by the positive/slightly negative excess molar volumes in these binary systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10953-012-9875-7) contains supplementary material, which is available to authorized users.