Cryopreservation of Cell Sheets for Regenerative Therapy: Application of Vitrified Hydrogel Membranes.
Yoshitaka MiyamotoPublished in: Gels (Basel, Switzerland) (2023)
Organ transplantation is the first and most effective treatment for missing or damaged tissues or organs. However, there is a need to establish an alternative treatment method for organ transplantation due to the shortage of donors and viral infections. Rheinwald and Green et al. established epidermal cell culture technology and successfully transplanted human-cultured skin into severely diseased patients. Eventually, artificial cell sheets of cultured skin were created, targeting various tissues and organs, including epithelial sheets, chondrocyte sheets, and myoblast cell sheets. These sheets have been successfully used for clinical applications. Extracellular matrix hydrogels (collagen, elastin, fibronectin, and laminin), thermoresponsive polymers, and vitrified hydrogel membranes have been used as scaffold materials to prepare cell sheets. Collagen is a major structural component of basement membranes and tissue scaffold proteins. Collagen hydrogel membranes (collagen vitrigel), created from collagen hydrogels through a vitrification process, are composed of high-density collagen fibers and are expected to be used as carriers for transplantation. In this review, the essential technologies for cell sheet implantation are described, including cell sheets, vitrified hydrogel membranes, and their cryopreservation applications in regenerative medicine.