Login / Signup

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Anubha MahajanJennifer WesselSara M WillemsWei ZhaoNeil R RobertsonAudrey Y ChuWei GanHidetoshi KitajimaDaniel TaliunN William RaynerXiuqing GuoYingchang LuMan LiRichard A JensenYao HuShaofeng HuoKurt K LohmanWeihua ZhangJames P CookBram Peter PrinsJason FlannickNiels GrarupVassily Vladimirovich TrubetskoyJasmina KravicYoung Jin KimDenis V RybinHanieh YaghootkarMartina Müller-NurasyidKarina MeidtnerRuifang Li-GaoTibor V VargaJonathan MartenJin LiAlbert Vernon SmithPing AnSymen LigthartStefan GustafssonGiovanni MalerbaAyse DemirkanJuan Fernandez TajesValgerdur SteinthorsdottirMatthias WuttkeCécile LecoeurMichael PreussLawrence F BielakMarielisa GraffHeather M HighlandAnne E JusticeDajiang J LiuEirini MarouliGina Marie PelosoHelen R Warrennull nullnull nullnull nullSaima AfaqShoaib AfzalEmma AhlqvistPeter AlmgrenNajaf AminLia B BangAlain G BertoniCristina BombieriJette Bork-JensenIvan BrandslundJennifer A BrodyNoël P BurttMickaël CanouilYii-Der Ida ChenYoon Shin ChoCramer ChristensenSophie V EastwoodKai-Uwe EckardtKrista FischerGiovanni GambaroVilmantas GiedraitisMegan L GroveHugoline G de HaanSophie HackingerYang HaiSohee HanAnne Tybjærg-HansenMarie-France HivertBo IsomaaSusanne JägerMarit E JørgensenTorben JørgensenAnnemari KäräjämäkiBong-Jo KimSung Soo KimHeikki A KoistinenPeter KovacsJennifer KriebelFlorian KronenbergKristi LällLeslie A LangeJung-Jin LeeBenjamin LehneHuaixing LiKeng-Hung LinAllan LinnebergChing-Ti LiuJun LiuMarie LohReedik MägiVasiliki MamakouRoberta McKean-CowdinGirish NadkarniMatt NevilleSune F NielsenIoanna NtallaPatricia A PeyserWolfgang RathmannKenneth RiceStephen S RichLine RodeOlov RolandssonSebastian SchönherrElizabeth SelvinKerrin S SmallAlena StančákováPraveen SurendranKent D TaylorTanya M TeslovichBarbara ThorandGudmar ThorleifssonAdrienne TinAnke TönjesAnette VarboDaniel R WitteAndrew R WoodPranav YajnikJie YaoLoïc YengoRobin YoungPhilippe AmouyelHeiner BoeingEric BoerwinkleErwin P BottingerRajiv ChowdhuryFrancis S CollinsGeorge DedoussisAbbas DehghanPanos DeloukasMarco M FerrarioJean FerrièresJose C FlorezPhilippe FrossardVilmundur GudnasonTamara B HarrisSusan R HeckbertJoanna M M HowsonMartin IngelssonSekar KathiresanFrank KeeJohanna KuusistoClaudia LangenbergLenore J LaunerCecilia M LindgrenSatu MännistöThomas MeitingerOlle MelanderKaren L MohlkeMarie MoitryAndrew D MorrisAlison D MurrayRenée de MutsertMarju Orho-MelanderKatharine R OwenMarkus PerolaAnnette PetersMichael A ProvinceAsif RasheedPaul M RidkerFernando RivadineiraFrits R RosendaalAnders H RosengrenVeikko SalomaaWayne H-H SheuRob SladekBlair H SmithKonstantin StrauchAndré G UitterlindenRohit VarmaCristen J WillerMatthias BlüherAdam S ButterworthJohn Campbell ChambersDaniel I ChasmanJohn DaneshCornelia van DuijnJosée DupuisOscar H FrancoPaul W FranksPhilippe FroguelHarald GrallertLeif GroopBok-Ghee HanTorben HansenAndrew T HattersleyCaroline HaywardErik IngelssonSharon L R KardiaFredrik KarpeJaspal Singh KoonerAnna KöttgenKari KuulasmaaMarkku LaaksoXu LinLars LindYongmei LiuRuth J F LoosJonathan MarchiniAndres MetspaluDennis Mook-KanamoriBørge G NordestgaardColin N A PalmerJames S PankowOluf PedersenBruce M PsatyRainer RauramaaNaveed SattarMatthias B SchulzeNicole SoranzoTimothy D SpectorKari StefanssonMichael StumvollUnnur ThorsteinsdottirTiinamaija TuomiJaakko TuomilehtoNicholas J WarehamJames G WilsonEleftheria ZegginiRobert A ScottInês A BarrosoTimothy M FraylingMark O GoodarziJames B MeigsMichael BoehnkeDanish SaleheenAndrew P MorrisJerome I RotterMark I McCarthy
Published in: Nature genetics (2018)
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
Keyphrases