Login / Signup

Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean.

Julia DuerschlagWiebke MohrTimothy G FerdelmanJulie LaRocheDhwani DesaiPeter L CrootDaniela VoßOliver ZielinskiGaute LavikSten LittmannClara Martínez-PérezBernhard TschitschkoNina BartlauHelena OsterholzThorsten DittmarMarcel M M Kuypers
Published in: The ISME journal (2021)
Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 µmol C l-1 d-1) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell 13CO2 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65-88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems.
Keyphrases
  • minimally invasive
  • climate change
  • single cell
  • magnetic resonance
  • rna seq
  • high throughput
  • high resolution
  • computed tomography
  • drug induced
  • water quality
  • electron transfer