Diel and seasonal stem growth responses to climatic variation are consistent across species in a subtropical tree community.
Bo ZhouFrank J SterckBart KruijtZe-Xin FanPieter A ZuidemaPublished in: The New phytologist (2023)
Understanding how intra-annual stem growth responds to atmospheric and soil conditions is essential for assessing the effects of climate extremes on forest productivity. In species-poor forests, such understanding can be obtained by studying stem growth of the dominant species. Yet, in species-rich (sub-)tropical forests, it is unclear whether these responses are consistent among species. We monitored intra-annual stem growth with high-resolution dendrometers for 27 trees belonging to 14 species over 5 yr in a montane subtropical forest. We quantified diel and seasonal stem growth patterns, verified to what extent observed growth patterns coincide across species and analysed their main climatic drivers. We found very consistent intra-annual growth patterns across species. Species varied in the rate but little in the timing of growth. Diel growth patterns revealed that - across species - trees mainly grew before dawn when vapour pressure deficit (VPD) was low. Within the year, trees mainly grew between May and August driven by temperature and VPD, but not by soil moisture. Our study reveals highly consistent stem growth patterns and climatic drivers at community level. Further studies are needed to verify whether these results hold across climates and forests, and whether they can be scaled up to estimate forest productivity.