Login / Signup

Structure-Based Relative Energy Prediction Model: A Case Study of Pd(II)-Catalyzed Ethylene Polymerization and the Electronic Effect of Ancillary Ligands.

Han LuXiaohui KangYi Luo
Published in: The journal of physical chemistry. B (2021)
Rapidly mapping a reaction energy profile to understand the reaction mechanism is of great importance and highly desired for the discovery of new chemical reactions. Herein, a combination of density functional theory (DFT) calculations and regression analysis has been applied to construct quantitative structures-based energy prediction models, considering Pd(II)-catalyzed ethylene polymerization as an example, for rapid construction of the reaction energy profile. It is inspiring that only geometrical parameters of the reaction center of one species are capable of predicting the whole energy profile with high accuracy. The reaction energies of ethylene insertion and β-H elimination, which directly correlate with polymerization activity and the possibility of branch formation, were studied to elucidate the electronic effects of ancillary ligands. Further analyses of these models from the statistical and chemical points of view afforded useful information on the design of the catalyst ligand. The current work is expected to methodologically shed new light on rapidly mapping the energy profile of chemical reactions and further provide useful information for the development of the reactions.
Keyphrases