Login / Signup

Reaching Quantum Accuracy in Predicting Adsorption Properties for Ethane/Ethene in Zeolitic Imidazolate Framework-8 at Low Pressure Regime.

Siddharth RavichandranMahsa NajafiRuben GoeminneJoeri F M DenayerVeronique Van SpeybroeckLouis Vanduyfhuys
Published in: Journal of chemical theory and computation (2024)
Nanoporous materials in the form of metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) are promising membrane materials for the separation of hydrocarbon mixtures. To compute the adsorption isotherms in such adsorbents, grand canonical Monte Carlo simulations have proven to be very useful. The quality of these isotherms depends on the accuracy of adsorbate-adsorbent interactions, which are mostly described using force fields owing to their low computational cost. However, force field predictions of adsorption uptake often show discrepancies from experiments at low pressures, providing the need for methods that are more accurate. Hence, in this work, we propose and validate two novel methodologies for the ZIF-8/ethane and ethene systems; a benchmarking methodology to evaluate the performance of any given force field in describing adsorption in the low-pressure regime and a refinement procedure to rescale the parameters of a force field to better describe the host-guest interactions and provide for simulation isotherms with close agreement to experimental isotherms. Both methodologies were developed based on a reference Henry coefficient, computed with the PBE-MBD functional using the importance sampling technique. The force field rankings predicted by the benchmarking methodology involve the comparison of force field derived Henry coefficients with the reference Henry coefficients and ranking the force fields based on the disparities between these Henry coefficients. The ranking from this methodology matches the rankings made based on uptake disparities by comparing force field derived simulation isotherms to experimental isotherms in the low-pressure regime. The force field rescaling methodology was proven to refine even the worst performing force field in UFF/TraPPE. The uptake disparities of UFF/TraPPE improved from 197% and 194% to 11% and 21% for ethane and ethene, respectively. The proposed methodology is applicable to predict adsorption across nanoporous materials and allows for rescaled force fields to reach quantum accuracy without the need for experimental input.
Keyphrases
  • single molecule
  • monte carlo
  • aqueous solution
  • molecular dynamics
  • metal organic framework
  • computed tomography
  • minimally invasive
  • diffusion weighted imaging
  • energy transfer
  • clinical evaluation