Application of Deep Learning-Based Denoising Technique for Radiation Dose Reduction in Dynamic Abdominal CT: Comparison with Standard-Dose CT Using Hybrid Iterative Reconstruction Method.
Motonori NagataYasutaka IchikawaKensuke DomaeKazuya YoshikawaYoshinori KaniiAkio YamazakiNaoki NagasawaMasaki IshidaHajime SakumaPublished in: Journal of digital imaging (2023)
The purpose is to evaluate whether deep learning-based denoising (DLD) algorithm provides sufficient image quality for abdominal computed tomography (CT) with a 30% reduction in radiation dose, compared to standard-dose CT reconstructed with conventional hybrid iterative reconstruction (IR). The subjects consisted of 50 patients who underwent abdominal CT with standard dose and reconstructed with hybrid IR (ASiR-V50%) and another 50 patients who underwent abdominal CT with approximately 30% less dose and reconstructed with ASiR-V50% and DLD at low-, medium- and high-strength (DLD-L, DLD-M and DLD-H, respectively). The standard deviation of attenuation in liver parenchyma was measured as image noise. Contrast-to-noise ratio (CNR) for portal vein on portal venous phase was calculated. Lesion conspicuity in 23 abdominal solid mass on the reduced-dose CT was rated on a 5-point scale: 0 (best) to -4 (markedly inferior). Compared with hybrid IR of standard-dose CT, DLD-H of reduced-dose CT provided significantly lower image noise (portal phase: 9.0 (interquartile range, 8.7-9.4) HU vs 12.0 (11.4-12.7) HU, P < 0.0001) and significantly higher CNR (median, 5.8 (4.4-7.4) vs 4.3 (3.3-5.3), P = 0.0019). As for DLD-M of reduced-dose CT, no significant difference was found in image noise and CNR compared to hybrid IR of standard-dose CT (P > 0.99). Lesion conspicuity scores for DLD-H and DLD-M were significantly better than hybrid IR (P < 0.05). Dynamic contrast-enhanced abdominal CT acquired with approximately 30% lower radiation dose and generated with the DLD algorithm exhibit lower image noise and higher CNR compared to standard-dose CT with hybrid IR.