Login / Signup

Laser Access to Quercetin Radicals and Their Repair by Co-antioxidants.

Tim KohlmannMartin Goez
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
We have demonstrated the feasibility and ease of producing quercetin radicals by photoionization with a pulsed 355 nm laser. A conversion efficiency into radicals of 0.4 is routinely achieved throughout the pH range investigated (pH 2-9), and the radical generation is completed within a few ns. No precursor other than the parent compound is needed, and the ionization by-products do not interfere with the further fate of the radicals. With this generation method, we have characterized the quercetin radicals and studied the kinetics of their repairs by co-antioxidants such as ascorbate and 4-aminophenol. Bell-shaped pH dependences of the observed rate constants reflect opposite trends in the availability of the reacting protonation forms of radical and co-antioxidant and even at their maxima mask the much higher true rate constants. Kinetic isotope effects identify the repairs as proton-coupled electron transfers. An examination of which co-antioxidants are capable of repairing the quercetin radicals and which are not confines the bond dissociation energies of quercetin and its monoanion experimentally to 75-77 kcal mol-1 and 72-75 kcal mol-1 , a much narrower interval in the case of the former than previously estimated by theoretical calculations.
Keyphrases
  • density functional theory
  • oxidative stress
  • molecular dynamics
  • electron transfer
  • high speed
  • dengue virus
  • mass spectrometry
  • gas chromatography
  • monte carlo
  • solid state