Login / Signup

Carbon Emission Evaluation of CO 2 Curing in Vibro-Compacted Precast Concrete Made with Recycled Aggregates.

David Suescum MoralesEnrique Fernández-LedesmaÁgata González-CaroAntonio Manuel Merino-LechugaJosé María Fernández-RodríguezJose Ramón Jimenez
Published in: Materials (Basel, Switzerland) (2023)
The objective of the present study was to explore three types of vibro-compacted precast concrete mixtures replacing fine and coarse gravel with a recycled/mixed concrete aggregate (RCA or MCA). The portlandite phase found in RCA and MCA by XRD is a "potential" CO 2 sink. CO 2 curing improved the compressive strength in all the mixtures studied. One tonne of the mixtures studied could be decarbonised after only 7 days of curing 13,604, 36,077 and 24,635 m 3 of air using natural aggregates, RCA or MCA, respectively. The compressive strength obtained, XRD, TGA/DTA and carbon emission evaluation showed that curing longer than 7 days in CO 2 was pointless. The total CO 2 emissions by a mixture using CO 2 curing at 7 days were 221.26, 204.38 and 210.05 kg CO 2 eq/m 3 air using natural aggregates, RCA or MCA, respectively. The findings of this study provide a valuable contribution to carbon emission evaluation of CO 2 curing in vibro-compacted precast concrete with recycled/mixed concrete aggregates (RCA or MCA). The technology proposed in this research facilitates carbon capture and use and guarantees enhanced compressive strength of the concrete samples.
Keyphrases
  • solid state
  • air pollution
  • risk assessment
  • molecular dynamics simulations