Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1.

Xena SerifovaEstefanía Ugarte-BerzalGhislain OpdenakkerJennifer Vandooren
Published in: Cellular and molecular life sciences : CMLS (2019)
Proteolysis is a crucial process in life, tightly controlled by numerous natural protease inhibitors. In human blood, alpha-2-macroglobulin is an emergency protease inhibitor preventing coagulation and damage to endothelia and leukocytes. With the use of a unique protease trapping mechanism, alpha-2-macroglobulin lures active proteases into its snap-trap, shields these from potential substrates and 'flags' their complex for elimination by receptor-mediated endocytosis. Matrix metalloprotease-9/gelatinase B is a secreted protease increased in blood of patients with inflammations, vascular disorders and cancers. Matrix metalloprotease-9 occurs as monomers and stable homotrimers, but the reason for their co-existence remains obscure. We discovered that matrix metalloprotease-9 homotrimers undergo reduced anti-proteolytic regulation by alpha-2-macroglobulin and are able to travel as a proteolytically active hitchhiker on alpha-2-macroglobulin. As a comparison, we revealed that monomeric active matrix metalloprotease-9 is efficiently trapped by human plasma alpha-2-macroglobulin and this masks the detection of activated matrix metalloprotease-9 with standard analysis techniques. In addition, we show that alpha-2-macroglobulin/trimer complexes escape clearance through the receptor low-density lipoprotein receptor-related protein 1, also known as the alpha-2-macroglobulin receptor. Thus, the biochemistry and biology of matrix metalloprotease-9 monomers and trimers are completely different as multimerization enables active matrix metalloprotease-9 to partially avoid alpha-2-macroglobulin regulation both by direct protease inhibition and by removal from the extracellular space by receptor-mediated endocytosis. Finally, for the biomarker field, the analysis of alpha-2-macroglobulin/protease complexes with upgraded technology is advocated as a quotum for protease activation in human plasma samples.