Login / Signup

Comprehensive bioinformatics analysis of structural and functional consequences of deleterious missense mutations in the human QDPR gene.

Aishwarya GirishSamruddhi SutarThirupathihalli Pandurangappa Krishna MurthySuheeth Amberi PremanandVrinda GargLavan PatilS ShreyasRohit ShuklaArvind Kumar YadavTiratha Raj Singh
Published in: Journal of biomolecular structure & dynamics (2023)
Quinonoid dihydropteridine reductase (QDPR) is an enzyme that regulates tetrahydrobiopterin (BH4), a cofactor for enzymes involved in neurotransmitter synthesis and blood pressure regulation. Reduced QDPR activity can cause dihydrobiopterin (BH2) accumulation and BH4 depletion, leading to impaired neurotransmitter synthesis, oxidative stress, and increased risk of Parkinson's disease. A total of 10,236 SNPs were identified in the QDPR gene, with 217 being missense SNPs. Over 18 different sequence-based and structure-based tools were employed to assess the protein's biological activity, with several computational tools identifying deleterious SNPs. Additionally, the article provides detailed information about the QDPR gene and protein structure and conservation analysis. The results showed that 10 mutations were harmful and linked to brain and central nervous system disorders, and were predicted to be oncogenic by Dr. Cancer and CScape. Following conservation analysis, the HOPE server was used to analyse the effect of six selected mutations (L14P, V15G, G23S, V54G, M107K, G151S) on the protein structure. Overall, the study provides insights into the biological and functional impact of nsSNPs on QDPR activity and the potential induced pathogenicity and oncogenicity. In the future, research can be conducted to systematically evaluate QDPR gene variation through clinical studies, investigate mutation prevalence across different geographical regions, and validate computational results with conclusive experiments.Communicated by Ramaswamy H. Sarma.
Keyphrases