Login / Signup

Effect of dietary antioxidants on free radical damage in dogs and cats.

Dennis E JewellLaura A MotsingerInke Paetau-Robinson
Published in: Journal of animal science (2024)
Alpha-tocopherol (vitamin E) is an antioxidant that is largely involved in immune defense and enhancing the ability of biological systems to respond to oxidative stress. During the process of free radical scavenging, vitamin C supports regeneration of vitamin E. Although the functions of antioxidants and their importance have been widely studied, the intricate interplay between antioxidants has yet to be fully elucidated, especially in dogs and cats. As such, the objective of the present study was to determine the effect of a combination of dietary antioxidants on DNA damage and antioxidant status in dogs and cats. Forty adult mixed breed dogs and forty adult domestic shorthair cats were randomly assigned to one of four treatment groups per species. Dogs and cats remained in these groups for the 84-day duration of the study. The food differed in antioxidant supplementation with the control food meeting all of the Association of American Feed Control Officials requirements for complete and balanced nutrition, including sufficient vitamin E to exceed the published minimum. The treatment diets were targeted to include either 500, 1000 or 1500 IU vitamin E/kg as well as 100 ppm vitamin C and 1.5 ppm of β-carotene in the food. The effect of vitamin E supplementation level on serum vitamin E concentration, DNA damage, and total antioxidant power was evaluated. Feeding diets enriched with antioxidants resulted in an increased (P < 0.05) circulating vitamin E concentration, increased (P < 0.05) immune cell protection, reduced (P < 0.05) DNA damage in dogs and an improved (P < 0.05) antioxidant status. Overall, these data demonstrated that feeding a dry kibble with an antioxidant blend inclusive of vitamin E, vitamin C, and β-carotene enhanced cell protection and improved antioxidant status in dogs and cats.
Keyphrases