Login / Signup

Surface Lattice Oxygen Activation on Sr2Sb2O7 Enhances the Photocatalytic Mineralization of Toluene: from Reactant Activation, Intermediate Conversion to Product Desorption.

Lvcun ChenPeng ChenHong WangWen CuiJianping ShengJieyuan LiYu Xin ZhangYing ZhouFan Dong
Published in: ACS applied materials & interfaces (2021)
Transition-metal oxide photocatalysis has attracted increasing attention in environmental remediation and solar energy conversion. Surface lattice oxygen is the key active site on the metal oxide, but its role and activation mechanism in the photocatalytic VOC mineralization are still unclear. In this work, we have demonstrated that Sr2Sb2O7 exhibits an excellent photocatalytic activity and stability compared to TiO2 (P25) in gaseous toluene mineralization because the lattice oxygen on Sr2Sb2O7 can be activated efficiently. The lattice oxygen of Sr2Sb2O7 promotes the adsorption and activation of O2 and H2O molecules and enhances the production of •O2- and •OH radicals, as confirmed by the electron spin resonance and DFT calculations. The in situ diffuse reflectance infrared Fourier transform spectroscopy spectra are applied to dynamically monitor the intermediate activation and selective conversion. Combined with DFT calculation, the role and the mechanism of lattice oxygen in photocatalysis have been revealed. Owing to the promoted surface lattice oxygen, the selectivity for benzoic acid formation is enhanced and final product desorption is promoted, which could largely advance the ring opening and mineralization of toluene. This work reveals the origin of lattice oxygen activation and the role for efficient VOC degradation at the atomic scale.
Keyphrases