Login / Signup

CXCR4 high megakaryocytes regulate host-defense immunity against bacterial pathogens.

Jin WangJiayi XieDaosong WangXue HanMinqi ChenGuojun ShiLinjia JiangMeng Zhao
Published in: eLife (2022)
Megakaryocytes (MKs) continuously produce platelets to support hemostasis and form a niche for hematopoietic stem cell maintenance in the bone marrow. MKs are also involved in inflammatory responses; however, the mechanism remains poorly understood. Using single-cell sequencing, we identified a CXCR4 highly expressed MK subpopulation, which exhibited both MK-specific and immune characteristics. CXCR4 high MKs interacted with myeloid cells to promote their migration and stimulate the bacterial phagocytosis of macrophages and neutrophils by producing TNFα and IL-6. CXCR4 high MKs were also capable of phagocytosis, processing, and presenting antigens to activate T cells. Furthermore, CXCR4 high MKs also egressed circulation and infiltrated into the spleen, liver, and lung upon bacterial infection. Ablation of MKs suppressed the innate immune response and T cell activation to impair the anti-bacterial effects in mice under the Listeria monocytogenes challenge. Using hematopoietic stem/progenitor cell lineage-tracing mouse lines, we show that CXCR4 high MKs were generated from infection-induced emergency megakaryopoiesis in response to bacterial infection. Overall, we identify the CXCR4 high MKs, which regulate host-defense immune response against bacterial infection.
Keyphrases