Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells.
Chiranjit MaitiSheetal ParidaShibayan KayalSaikat MaitiMahitosh MandalDibakar DharaPublished in: ACS applied materials & interfaces (2018)
Success of chemotherapy as a treatment for cancer has been often inhibited by multidrug resistance (MDR) of the cancer cells. There is a clear need to generate strategies to overcome this resistance. In this work, we have developed redox-responsive and core-cross-linked micellar nanocarriers using poly(ethylene glycol)-block-poly(2-(methacryloyloxy)ethyl 5-(1,2-dithiolan-3-yl)pentanoate) diblock copolymers (PEG-b-PLAHEMA) with tunable swelling properties for the delivery of drugs toward drug-sensitive MDA-MB-231 and drug-resistant MDA-MB-231 (231R) cancer cells. PEG-b-PLAHEMA containing varying number of 2-(methacryloyloxy)ethyl 5-(1,2-dithiolan-3-yl)pentanoate (LAHEMA) units were synthesized by employing the reversible addition-fragmentation chain transfer polymerization technique. The block copolymer self-assembly, cross-linking induced by reduction, and de-cross-linking triggered time-dependent controlled swelling of micelles were studied using dynamic light scattering, fluorescence spectroscopy, and transmission electron microscopy. In vitro cytotoxicity, cellular uptake efficiency, and glutathione-responsive anticancer activity of doxorubicin (DOX) encapsulated in core-cross-linked block copolymer micelles (CCMs) toward both drug-sensitive and drug-resistant cancer cell lines were evaluated. Significant reduction in IC50 was observed by DOX-loaded CCMs toward drug-resistant 231R cancer cell lines, which was further improved by coencapsulating DOX and verapamil (a P-glycoprotein inhibitor) in CCMs. Thus, these reduction-sensitive biocompatible CCMs with tunable swelling property are very promising in overcoming MDR in cancer cells.
Keyphrases
- drug resistant
- drug delivery
- multidrug resistant
- cancer therapy
- drug release
- acinetobacter baumannii
- papillary thyroid
- squamous cell
- lymph node metastasis
- squamous cell carcinoma
- ionic liquid
- electron microscopy
- single molecule
- mass spectrometry
- locally advanced
- young adults
- rectal cancer
- cell cycle arrest
- electron transfer
- signaling pathway
- combination therapy
- electronic health record
- pi k akt