Post-natal developmental changes in the composition of the rat neocortical N-glycome.
Thomas S KlarićMatija SalopekVedran MicekOlga Gornik KljaićGordan LaucPublished in: Glycobiology (2022)
Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.
Keyphrases
- cell surface
- liquid chromatography
- low birth weight
- mass spectrometry
- oxidative stress
- cell adhesion
- tandem mass spectrometry
- preterm infants
- high resolution
- high resolution mass spectrometry
- south africa
- white matter
- antibiotic resistance genes
- liquid chromatography tandem mass spectrometry
- simultaneous determination
- resting state
- high performance liquid chromatography
- african american
- drug delivery
- functional connectivity
- solid phase extraction
- optic nerve
- congenital heart disease
- cerebral ischemia