Space-Isolated Chromophore for Organic Blue Phosphorescence with High Efficiency and a Deep-Blue Lasing Characteristic.
Yongyu ChaRunqing GaoZhen ZhangHongbing FuZhenyi YuPublished in: The journal of physical chemistry letters (2023)
High-efficiency blue phosphorescence and deep-blue laser emissions play a crucial role in organic optoelectronic applications. However, designing metal-free organic blue luminescence with high energy levels of excited states and suppression of nonradiative transitions remains a formidable challenge. Herein, we demonstrate a synthetic strategy for achieving a deep-blue laser and efficient phosphorescence based on confining chromophores in the tetrahedral structure of sp3 hybridization. The data analysis reveals that the construction of the quaternary carbon center contributes to spatially separated donors and acceptors and considerable steric constraints, prompting an effective intersystem crossing (ISC) process and suppressing nonradiative transitions. The negligible interaction between chromophores simultaneously produces a deep-blue fluorescent laser and blue phosphorescence with an efficiency up to 82.3%. This work opens the door to multifunctional blue-emitting materials with high efficiency, providing a high-potential candidate for electrically pumped organic lasers and energy efficient light-emitting diodes.