Login / Signup

Comparative Study of Different Ion-Exchange Membrane Types in Diffusion Dialysis for the Separation of Sulfuric Acid and Nickel Sulfate.

Sergey LozaNatalia V LozaNikita KovalchukNazar RomanyukJulia Loza
Published in: Membranes (2023)
The possibility of using various types of ion-exchange membranes in diffusion dialysis for the separation of sulfuric acid and nickel sulfate has been evaluated. The process of the dialysis separation of a real waste solution from an electroplating facility containing 252.3 g/L of sulfuric acid, 20.9 g/L of nickel ions and small amounts of zinc, iron, copper ions, etc. has been studied. Heterogeneous cation-exchange membrane containing sulfonic groups and heterogeneous anion-exchange membranes with different thicknesses (from 145 μm to 550 μm) and types of fixed groups (four samples with quaternary ammonium base and one sample with secondary and tertiary amines) have been used. The diffusion fluxes of sulfuric acid, nickel sulfate, and the total and osmotic fluxes of the solvent have been determined. The use of a cation-exchange membrane does not allow the separation of the components, since the fluxes of both components are low and comparable in magnitude. The use of anion-exchange membranes makes it possible to efficiently separate sulfuric acid and nickel sulfate. Anion-exchange membranes with quaternary ammonium groups are more effective in the diffusion dialysis process, while the thin membrane turns out to be the most effective.
Keyphrases
  • ionic liquid
  • oxide nanoparticles
  • chronic kidney disease
  • end stage renal disease
  • reduced graphene oxide
  • quantum dots